Hidden positivity and a new approach to numerical computation of Hausdorff dimension: higher order methods
نویسندگان
چکیده
In [14], the authors developed a new approach to computation of Hausdorff dimension invariant set an iterated function system or IFS. this paper, we extend incorporate high order approximation methods. We again rely on fact that can associate IFS parametrized family positive, linear, Perron-Frobenius operators $L_s$, idea known in varying degrees generality for many years. Although $L_s$ is not compact setting consider, it possesses strictly positive $C^m$ eigenfunction $v_s$ with eigenvalue $R(L_s)$ arbitrary $m$ and all other points $z$ spectrum satisfy $|z| \le b$ some constant $b < R(L_s)$. Under appropriate assumptions IFS, value $s=s_*$ which $R(L_s) =1$. This problem then approximated by collocation method at extended Chebyshev each subinterval using continuous piecewise polynomials degree $r$. Using extension Perron theory matrices map cone $K$ its interior explicit priori bounds derivatives $v_s$, give rigorous upper lower $s_*$, these converge rapidly $s_*$ as mesh size decreases and/or polynomial increases.
منابع مشابه
C Eigenfunctions of Perron-frobenius Operators and a New Approach to Numerical Computation of Hausdorff Dimension
We develop a new approach to the computation of the Hausdorff dimension of the invariant set of an iterated function system or IFS. In the one dimensional case, our methods require only C3 regularity of the maps in the IFS. The key idea, which has been known in varying degrees of generality for many years, is to associate to the IFS a parametrized family of positive, linear, Perron-Frobenius op...
متن کاملthe aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame
رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...
C Eigenfunctions of Perron-frobenius Operators and a New Approach to Numerical Computation of Hausdorff Dimension: Complex Continued Fractions
In a previous paper [11], the authors developed a new approach to the computation of the Hausdorff dimension of the invariant set of an iterated function system or IFS and studied some applications in one dimension. The key idea, which has been known in varying degrees of generality for many years, is to associate to the IFS a parametrized family of positive, linear, Perron-Frobenius operators ...
متن کاملC Eigenfunctions of Perron-frobenius Operators and a New Approach to Numerical Computation of Hausdorff Dimension: Applications in R
We develop a new approach to the computation of the Hausdorff dimension of the invariant set of an iterated function system or IFS. In the one dimensional case that we consider here, our methods require only C3 regularity of the maps in the IFS. The key idea, which has been known in varying degrees of generality for many years, is to associate to the IFS a parametrized family of positive, linea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of fractal geometry
سال: 2021
ISSN: ['2308-1309', '2308-1317']
DOI: https://doi.org/10.4171/jfg/111